Improved Physically-based AMSR-E Oceanic Rainfall Algorithm

K-W Jin, S-W Hong, R. Weitz, T. Wilheit*

Department of Atmospheric Science

Texas A&M University

College Station, TX USA

* Presenting Author

AMSR-E RR GROUND TRACK: 18v (JULY 2, 2003)

AMSR-E Rain Rate Uncertainty (JULY 2, 2003: 2026Z) ...-1.1.4-1.12... ...-96...0 2 3 Rain Rate (mm/h) 0 4 5

Conclusions

We have reduced freezing level bias

At Level-2 (10 GHz pixel), rainfall retrieval uncertainties vary from *ca.* 10% to 30%

Freezing level retrieval provides a useful "rain impossible" flag

Needs to be fine tuned to balance bias vs. random error

Variability of offset between ascending and descending suggests a calibration error